

Incorporating the 1st

Efficient fatigue assessment of welded structures using unstructured continuum element meshes

N. Friedl, W. Vonach, P. Löffler CAE Simulation & Solutions GmbH Vienna, Austria

Efficient and conforming-to-standard fatigue assessment of welded structures using unstructured continuum element meshes

W. Vonach, N. Friedl, P. Löffler

Company Profile

Who we are:

Engineering service provider

- FEM, CFD and client specific software development focused on:
 - -complex and non-linear problems
 - -fatigue assessment
- Based in Vienna

Internal R&D

- Internal research projects
- Software development

Motivation

Setlighteddens: quick and easy mesh generation

• Stindells confoodeel: rhootsleelf work

Tet mesh / mesh size influence

Assessment concepts

(Hobbacher, 2007)

Structural stress for solids

Sensor Elements

- Generated and embedded within post-processing
- Uses deformation field of solid model
- Stresses gained:
 - -Structural stress
 - –Averaged stress ("nominal")

Comparison of results

Results for different stress deriving methods

- tet mesh, sensor concept (IIW) with different mesh sizes:
 (a, b, c, d)
- -shell mesh: direct stress result: (e), IIW extrapolation (f ,g)
- -structured fine hex mesh, Dong, FE-Safe (h)
- -tet mesh, surface stress extrapolation (i, j)
- -flange thickness: 15mm, gusset: 10mm

✦ Shell model

- has to be derived from 3D geometry
- mid surface generation
- joining of midsurfaces
- thickness definitions
- effort needed!

Solid model

only geometry import needed

Shell model

- Element size 2 to 3 times shell thickness
 - for deriving "nominal" stress

- Quick non-conformal meshes of bodies
- Automatic tie generation
- Quick "tet and tie" mesh
- 2nd order Elements
- Element size 0.5 to 2 times plate thickness
- Higher computing time

Shell model

- global deformation
- "nominal" stresses
 - direct from FEM (eg S4R) for weld assessment
 - local stress and deformation not captured
 - inappropriate for base material assessment

- global deformation
- Iocal deformation
- Iocal stress peaks
 - for base material assessment
- structural and "nominal" stresses via sensor concept
- More Information

Example: T-connection

Shell model

weld definition in LIMIT -GUI

Solid model

 sensor generation and weld definition in LIMIT -GUI

Shell model

- weld definition
 - weld position, weld size a, FAT values
 - weld element definition
- stress taken directly from element
 - only "nominal" available (element centroid)
 - mesh dependent

- weld definition
 - weld position, weld size a, FAT values
 - sensor placement
- stress evaluation method
 - "nominal" stress (linearised and averaged)
 - -structural stress (linearised and extrapolated)

Shell model

- utilization ratio for each element
- discontinuous result
- good correlation to sensor results

- utilization ratio for all sensors
- continuous result
- good correlation to shell model
 - if shell model is appropriate

Advantages of sensor technology in LIMIT

- less modelling time
- strongly reduced mesh influence
- structural and "nominal" stress available
 - -different assessments of hot spots without remeshing
- improved accuracy
- closer to reality

Thank you for your attention

CAE Simulation & Solutions

E-mail:office@cae-sim-sol.at www.cae-sim-sol.at

